120,193 research outputs found

    The Gentlest Ascent Dynamics

    Full text link
    Dynamical systems that describe the escape from the basins of attraction of stable invariant sets are presented and analyzed. It is shown that the stable fixed points of such dynamical systems are the index-1 saddle points. Generalizations to high index saddle points are discussed. Both gradient and non-gradient systems are considered. Preliminary results on the nature of the dynamical behavior are presented

    Spin-one bosons in low dimensional Mott insulating states

    Full text link
    We analyze the strong coupling limit of spin-one bosons in low dimensional Mott insulating states. In 1D lattices, for an odd number of bosons per site (N0N_0), the ground state is a dimerized valence bond crystal state with a two-fold degeneracy; the low lying elementary spin excitations carry spin one. For an even number of bosons per site, the ground state is a nondegenerate spin singlet Mott state. We also argue that in a square lattice in a quantum disordered limit the ground states should be dimerized valence bond crystals for an odd integer N0N_0. Finally, we briefly report results for non-integer numbers of bosons per site in one-dimensional lattices.Comment: 5 pages; discussions on non-integer case have been shortene

    Nearly Scale-Invariant Spectrum of Adiabatic Fluctuations May be from a Very Slowly Expanding Phase of the Universe

    Full text link
    In this paper we construct an expanding phase with phantom matter, in which the scale factor expands very slowly but the Hubble parameter increases gradually, and assume that this expanding phase could be matched to our late observational cosmology by the proper mechanism. We obtain the nearly scale-invariant spectrum of adiabatic fluctuations in this scenario, different from the simplest inflation and usual ekpyrotic/cyclic scenario, the tilt of nearly scale-invariant spectrum in this scenario is blue. Although there exists an uncertainty surrounding the way in which the perturbations propagate through the transition in our scenario, which is dependent on the detail of possible "bounce" physics, compared with inflation and ekpyrotic/cyclic scenario, our work may provide another feasible cosmological scenario generating the nearly scale-invariant perturbation spectrum.Comment: 4 pages, no figures, to appear in Phys. Rev. D. Many thanks for referee's kind comments and criticism

    Is there a global model of learning organizations? An empirical, cross-nation study

    Get PDF
    This paper develops and tests a learning organization model derived from HRM and dynamic capability literatures in order to ascertain the model’s applicability across divergent global contexts. We define a learning organization as one capable of achieving on-going strategic renewal, arguing based on dynamic capability theory that the model has three necessary antecedents: HRM focus, developmental orientation and customer-facing remit. Drawing on a sample comprising nearly 6000 organizations across 15 countries, we show that learning organizations exhibit higher performance than their less learning-inclined counterparts. We also demonstrate that innovation fully mediates the relationship between our conceptualization of the learning organization and organizational performance in 11 of the 15 countries we examined. It is the first time in our knowledge that these questions have been tested in a major, cross- global study, and our work contributes to both HRM and dynamic capability literatures, especially where the focus is the applicability of best practice parameters across national boundaries

    Energy-dependent partial-wave analysis of all antiproton-proton scattering data below 925 MeV/c

    Full text link
    We present a new energy-dependent partial-wave analysis of all antiproton-proton elastic and charge-exchange scattering data below 925 MeV/c antiproton laboratory momentum. The long-range parts of the chiral one- and two-pion exchange interactions are included exactly. The short-range interactions, including the coupling to the mesonic annihilation channels, are parametrized by a complex boundary condition at a radius of r=1.2 fm. The updated database, which includes significantly more high-quality charge-exchange data, contains 3749 scattering data. The fit results in chi^2_min/N_df=1.048, where N_df=3578 is the number of degrees of freedom. We discuss the description of the experimental data and we present the antiproton-proton phase-shift parameters

    Universality in the synchronization of weighted random networks

    Full text link
    Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in the connection strengths. Here we study synchronization in weighted complex networks and show that the synchronizability of random networks with large minimum degree is determined by two leading parameters: the mean degree and the heterogeneity of the distribution of node's intensity, where the intensity of a node, defined as the total strength of input connections, is a natural combination of topology and weights. Our results provide a possibility for the control of synchronization in complex networks by the manipulation of few parameters.Comment: 4 pages, 3 figure

    Community detection in multiplex networks using locally adaptive random walks

    Full text link
    Multiplex networks, a special type of multilayer networks, are increasingly applied in many domains ranging from social media analytics to biology. A common task in these applications concerns the detection of community structures. Many existing algorithms for community detection in multiplexes attempt to detect communities which are shared by all layers. In this article we propose a community detection algorithm, LART (Locally Adaptive Random Transitions), for the detection of communities that are shared by either some or all the layers in the multiplex. The algorithm is based on a random walk on the multiplex, and the transition probabilities defining the random walk are allowed to depend on the local topological similarity between layers at any given node so as to facilitate the exploration of communities across layers. Based on this random walk, a node dissimilarity measure is derived and nodes are clustered based on this distance in a hierarchical fashion. We present experimental results using networks simulated under various scenarios to showcase the performance of LART in comparison to related community detection algorithms

    Weighted networks are more synchronizable: how and why

    Full text link
    Most real-world networks display not only a heterogeneous distribution of degrees, but also a heterogeneous distribution of weights in the strengths of the connections. Each of these heterogeneities alone has been shown to suppress synchronization in random networks of dynamical systems. Here we review our recent findings that complete synchronization is significantly enhanced and becomes independent of both distributions when the distribution of weights is suitably combined with the distribution of degrees. We also present new results addressing the optimality of our findings and extending our analysis to phase synchronization in networks of non-identical dynamical units.Comment: Proceedings of the CNET 2004 (29 August - 2 September 2004
    • …
    corecore